

Signaux et Systèmes

Chapitre 3

Représentation des signaux par séries de Fourier

Octobre 2024

TABLE DES MATIERES

- 3.1 Signaux et vecteurs
- 3.2 Comparaison de signaux
 - Corrélation
 - Détection de signaux
- 3.3 Approximation de signaux
 - Famille orthonormale de fonctions
 - Approximation aux moindres carrés
- 3.4 Séries de Fourier trigonométriques
- 3.5 Séries de Fourier complexes
- 3.6 Bases orthogonales: compléments

3.1 VECTEURS ET SIGNAUX

- Composantes d'un vecteur
- Composantes d'un signal
- Produit scalaire

Unser / Signaux & Systèmes

3-3

Composantes d'un vecteur

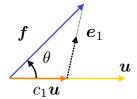
■ Géométrie vectorielle: notions de base

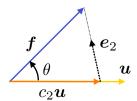
$$lacksquare$$
 Vecteur: $oldsymbol{f}=(f_1,f_2,\ldots,f_n)\in\mathbb{R}^n$

$$lacksquare$$
 Produit scalaire: $\langle m{f}, m{x}
angle = f_1 x_1 + f_2 x_2 + \cdots + f_n x_n$

$$\blacksquare$$
 Norme: $\|\boldsymbol{f}\|=\langle\boldsymbol{f},\boldsymbol{f}\rangle^{1/2}=\sqrt{f_1^2+f_2^2+\cdots+f_n^2}$

$$\blacksquare$$
 Angle entre deux vecteurs: $\cos \theta = \frac{\langle m{f}, m{u} \rangle}{\|m{f}\| \cdot \|m{u}\|}$





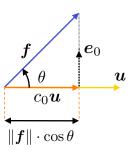
- lacktriangle Meilleure approximation de f par u
 - Approximation linéaire: $f \approx cu$

Unser / Signaux et systèmes

$$\blacksquare$$
 Calcul de l'erreur: $\|e\|^2 = \|f - cu\|^2 = \|f\|^2 + c^2 \|u\|^2 - 2c\langle f, u\rangle$

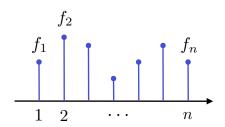
Minimisation: projection orthogonale!

$$e_0 \perp u \Leftrightarrow \langle f - c_0 u, u \rangle = 0 \Rightarrow c_0 = \frac{\langle f, u \rangle}{\langle u, u \rangle}$$



Norme et énergie d'un signal

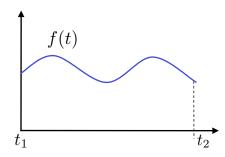
Vecteur comme un signal



$$m{f}=(f_1,f_2,\ldots,f_n)\in\mathbb{R}^n$$

Norme au carré:
$$\|oldsymbol{f}\|^2 = \sum_{i=1}^n |f_i|^2$$
 (= énergie)

■ Signal comme un vecteur



Energie du signal:
$$\|f\|_{L_2}^2 = \int_{t_1}^{t_2} |f(t)|^2 dt$$

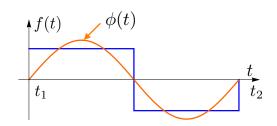
Espace vectoriel de signaux:

$$L_2([t_1, t_2]) = \left\{ f(t) : t \in [t_1, t_2] \land \int_{t_1}^{t_2} |f(t)|^2 dt < +\infty \right\}$$

Unser / Signaux et systèmes 3-5

Composantes d'un signal

- Signal comme un point dans un espace vectoriel (espace de Hilbert)
 - lacksquare Signal: $f \in L_2\left([t_1,t_2]\right)$
 - Energie du signal: $||f||_{L_2}^2 = \int_{t_1}^{t_2} |f(t)|^2 dt$



- Meilleure approximation de f(t) par $\phi(t)$
 - \blacksquare Approximation linéaire: $f(t) \simeq c \phi(t)$
 - Erreur quadratique:

$$\|e\|_{L_2}^2 = \int_{t_1}^{t_2} (f(t) - c\phi(t))^2 dt = \|f\|_{L_2}^2 + c^2 \|\phi\|_{L_2}^2 - 2c \int_{t_1}^{t_2} f(t)\phi(t) dt$$

Produit scalaire

Concepts mathématiques sous-jacents

- Espace vectoriel des signaux: $\forall f, g \in \mathcal{H}, \ \forall \alpha, \beta \in \mathbb{R} \quad \Rightarrow \quad \alpha f + \beta g \in \mathcal{H}$
- lacksquare Mesure de norme ou d'énergie: $\|f\|^2$
- Forme bilinéaire: $\forall c \in \mathbb{R}, \ \langle f, c\phi \rangle = c \langle f, \phi \rangle$ t.q. $\|f\|^2 = \langle f, f \rangle$

Produit scalaire (réel)

Soit un espace vectoriel $\mathcal H$ réel. On définit un produit scalaire associant à tout couple $f,g\in\mathcal H$ un réel noté $\langle f,g\rangle$ qui a les propriétés suivantes $\forall \alpha\in\mathbb R,\ \forall f,g,h\in\mathcal H$:

- 1. Linéarité: $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$ et $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$
- 2. Symétrie: $\langle f,g\rangle=\langle g,f\rangle$
- 3. Positivité: $||f||^2 = \langle f, f \rangle > 0, \ \forall f \neq 0$

Exemples

- $\mathbb{H} \mathcal{H} = \mathbb{R}^n : \langle \mathbf{f}, \mathbf{g} \rangle = f_1 g_1 + f_2 g_2 + \dots + f_n g_n$
- $\mathbb{H} \mathcal{H} = L_2([0,T]) : \langle f, g \rangle = \frac{1}{T} \int_0^T f(t)g(t) dt$

Unser / Signaux et systèmes 3-7

Produit scalaire (suite)

Produit scalaire hermitien

Soit un espace vectoriel $\mathcal H$ complexe. On définit un produit scalaire associant à tout couple $f,g\in\mathcal H$ un complexe noté $\langle f,g\rangle$ qui a les propriétés suivantes $\forall \alpha\in\mathbb C,\ \forall f,g,h\in\mathcal H$:

- 1. Linéarité: $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$ et $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$
- 2. Symétrie hermitienne: $\langle f,g\rangle=\langle g,f\rangle^*$
- 3. Positivité: $||f||^2 = \langle f, f \rangle > 0, \ \forall f \neq 0$

Généralisation du cas réel (symétrie → symétrie hermitienne)

Implication:
$$1+2 \Rightarrow \langle f, \alpha g \rangle = \alpha^* \langle f, g \rangle$$

Exemples

- $\mathcal{H} = \mathbb{C}^n : \langle \boldsymbol{f}, \boldsymbol{g} \rangle = f_1 g_1^* + f_2 g_2^* + \dots + f_n g_n^*$
- $\mathcal{H} = L_2\left([0,T]\right)$ complexe: $\langle f,g \rangle = \frac{1}{T} \int_0^T f(t)g^*(t) \, \mathrm{d}t$

3.2 COMPARAISON DE SIGNAUX

- Corrélation et similarité
- Corrélation normalisée
- Fonction d'intercorrélation: définition
- Intercorrélation et convolution
- Application à la détection

Unser / Signaux & Systèmes

3-9

Corrélation et similarité

Comparaison de signaux par mesure de distance

$$d(f,g) = \|f - g\| = \left(\int_{t_1}^{t_2} \left(f(t) - g(t)\right)^2 dt\right)^{1/2}$$

$$d(f,g) = 0 \quad \Leftrightarrow \quad f = g \quad \text{p.p.}$$

Mesure de similarité et corrélation

Hypothèse: il existe un produit scalaire associé t.q. $\|f\|^2 = \langle f,f \rangle$

$$\begin{split} \|f-g\|^2 &= \langle f-g, f-g \rangle = \|f\|^2 + \|g\|^2 - 2\langle f, g \rangle \\ \text{Donc si } \|f\|^2 &= \text{cste} \quad \text{et} \quad \|g\|^2 = \text{cste, alors} \\ \|f-g\| & \text{minimum} \quad \Leftrightarrow \quad \langle f, g \rangle \text{ maximum} \end{split}$$

Fonction d'intercorrélation

Degré de similarité entre deux signaux en fonction de leur décalage relatif

Corrélation normalisée

But: Définir une mesure de similarité qui ne dépend pas de l'amplitude des signaux

Corrélation normalisée (ou coefficient de corrélation)

$$\rho(f,g) = \frac{\langle f, g \rangle}{\|f\| \cdot \|g\|}$$

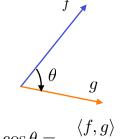
Valable pour tout produit scalaire

■ Inégalité de Cauchy-Schwarz

Quel que soit le produit scalaire, on a l'inégalité suivante

$$|\langle f,g\rangle|\leqslant \|f\|\cdot\|\,g\|$$

avec égalité si et seulement si $f = \alpha \cdot g$ avec α scalaire.



Implications pour la corrélation normalisée

$$-1 \leqslant \rho(f,g) \leqslant 1$$

$$\rho(f,g) = 1 \Leftrightarrow f = \alpha \cdot g \quad \text{p.p.}$$

 $\ \ \ \ \ \rho(f,g)$ peut être assimilé au $\cos\theta$ entre deux vecteurs ou signaux

Unser / Signaux et systèmes 3-11

Fonction d'intercorrélation: définition

Produit scalaire pour signaux complexes à énergie finie

$$\langle x, y \rangle_{L_2} = \int_{-\infty}^{+\infty} x(t) y^*(t) dt$$

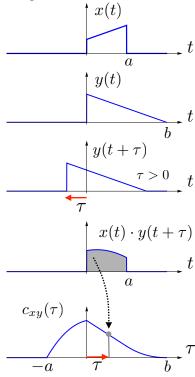
 $x(t),\;y(t)$ signaux complexes ou réels

$$c_{yx}(\tau) = \langle y(\cdot), x(\cdot + \tau) \rangle = \int_{-\infty}^{+\infty} y(t) \cdot x^*(t + \tau) dt$$

 $c_{xy}(\tau) = \langle x(\cdot), y(\cdot + \tau) \rangle = \int_{-\infty}^{+\infty} x(t) \cdot y^*(t + \tau) dt$

 $c_{xy}(\tau)$: intercorrélation entre x(t) et $y(t+\tau)$

 $c_{yx}(\tau)$: intercorrélation entre y(t) et $x(t+\tau)$



Corrélation et convolution

Intercorrélation

$$c_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \ y^*(t+\tau) \, \mathrm{d}t$$

Convolution

$$c_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \ y^*(t+\tau) \, dt \qquad (g*h)(\tau) = (h*g)(\tau) = \int_{-\infty}^{+\infty} g(\tau-u)h(u) \, du$$

$$c_{xy}(\tau) = \langle x, y(\cdot + \tau) \rangle = \int_{-\infty}^{+\infty} x(u - \tau) \ y^*(u) \, \mathrm{d}u = \int_{-\infty}^{+\infty} x^{\vee}(\tau - u) \ y^*(u) \, \mathrm{d}u$$

Operateur de renversement: $x^{\vee}(\tau) = x(-\tau)$

Donc:
$$c_{xy}(\tau) = (x^{\vee} * y^*)(\tau)$$

 $c_{yx}(\tau) = (y^{\vee} * x^*)(\tau) = (x^* * y^{\vee})(\tau) = (x^{*\vee} * y)(-\tau) = c_{xy}^*(-\tau)$ Suit:

$$c_{yx}(\tau) = c_{xy}^*(-\tau)$$

Si
$$x(t),\ y(t)$$
 réels: $c_{yx}(au) = c_{xy}(- au)$

3-13 Unser / Signaux et systèmes

Application: détection de signaux

Maximum en $t = \tau_0$ $s(t) = \alpha \cdot p(t - \tau_0) + \text{bruit}$ h(t) = p(-t) Détection par seuillage Pulse d'amplitude α

et de position τ_0 inconnues

- Structure du détecteur **Corrélateur** = filtre analogique (ou digital)
- Détecteur optimal en présence de bruit blanc Filtre adapté
- Applications:

Demo sonar

- Radar
- Sonar, Ultrasons
- Communications

3.3 APPROXIMATION DE SIGNAUX

- Changement de base dans le plan
- Espaces de Hilbert
- Système orthonormal de fonctions
- Approximation aux moindres carrés

Unser / Signaux & Systèmes

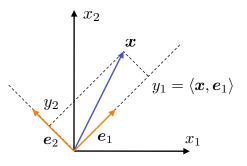
3-15

Changement de base dans le plan

Soit $x = (x_1, x_2)$ un point (vecteur) dans le plan \mathbb{R}^2 .

Soit
$$\{m{e}_1, m{e}_2\}$$
 une base orthonormale de \mathbb{R}^2 t.q. $\langle m{e}_i, m{e}_j
angle = \delta_{i-j} = \left\{egin{array}{ll} 1, & i=j \\ 0, & i
eq j \end{array}
ight.$

Comment représente-t-on x dans la base $\{e_1,e_2\}$?



■ Changement de base: $(x_1, x_2) \rightarrow (y_1, y_2)$

$$oldsymbol{x} = y_1 oldsymbol{e}_1 + y_2 oldsymbol{e}_2$$
 avec $y_i = \langle oldsymbol{x}, oldsymbol{e}_i
angle$

ou, sous forme plus concise, $oldsymbol{x} = \sum_i \langle oldsymbol{x}, oldsymbol{e}_i
angle$

3-16 Unser / Signaux et systèmes

Espace de Hilbert

Un espace de Hilbert ${\cal H}$ est un espace vectoriel complet, typiquement de dimension infinie, muni d'un produit scalaire $\langle x, y \rangle$.

Exemples

- Le plan \mathbb{R}^2 avec $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + x_2 y_2$
- $L_2([0,T])$: l'espace des signaux à durée et énergie finies avec $\langle x,y\rangle=\frac{1}{T}\int_0^T x(t)y^*(t)\,\mathrm{d}t$
- $L_2(\mathbb{R})$: l'espace des signaux à énergie finie avec $\langle x,y\rangle_{L_2}=\int_{-\infty}^{+\infty}x(t)y^*(t)\,\mathrm{d}t$

Le produit scalaire spécifie

- 1) la notion d'orthogonalité: $x \perp y \quad \Leftrightarrow \quad \langle x, y \rangle = 0$
- 2) la notion de similarité par l'intermédiaire de la norme

$$||x|| = \sqrt{\langle x, x \rangle} : ||x - y|| = 0 \Leftrightarrow x = y$$

3-17 Unser / Signaux et systèmes

Famille orthonormale de fonctions

Espace de Hilbert: $L_2([0,T])$

Produit scalaire associé: $\langle x, y \rangle = \frac{1}{T} \int_{0}^{T} x(t)y^{*}(t) dt$

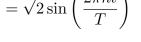
Définition

La famille de fonctions $\phi_1(t), \dots, \phi_N(t)$ est orthonormale si et seulement si

$$\langle \phi_m, \phi_n \rangle = \frac{1}{T} \int_0^T \phi_m(t) \phi_n^*(t) dt = \delta_{m-n}$$
 (Delta de Kronecker)

Exemple

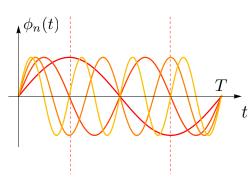
Les fonctions sinusoïdales: $\phi_n(t) = \sqrt{2} \sin \left(\frac{2\pi nt}{T} \right)$



En effet,

 $\langle \phi_m(t),\phi_n(t) \rangle = 0, \; m
eq n$ (argument de symétrie)

$$\|\phi_n\|^2 = \frac{1}{T} \int_0^T |\phi_n(t)|^2 dt = 2 \int_0^1 \sin^2(2\pi n\tau) d\tau = 1$$



Approximation aux moindres carrés

Soit ϕ_1, \ldots, ϕ_N une famille orthonormale de fonctions dans \mathcal{H}

Questions

- Comment approche-t-on un élément $x \in \mathcal{H}$ à l'aide des ϕ_n ?
- Quelle est l'erreur d'approximation?

■ Théorème d'approximation orthogonale

La meilleure approximation de $x \in \mathcal{H}$ par une combinaison linéaire de fonctions orthonormales $\phi_1, \dots, \phi_N \in \mathcal{H}$ est

$$x_N = \sum_{n=1}^N c_n \phi_n$$
 avec $c_n = \langle x, \phi_n \rangle$

L'erreur (minimale) correspondante est

$$||x - x_N||^2 = ||x||^2 - ||x_N||^2$$
 avec $||x_N||^2 = \sum_{n=1}^N |c_n|^2$

Unser / Signaux et systèmes 3-19

Preuve du théorème d'approximation orthogonale

Système orthonormal et énergie d'un signal: $y = \sum_{n=1}^N a_n \phi_n \quad \Rightarrow \quad \|y\|^2 = \sum_{n=1}^N |a_n|^2$ En effet: $\|y\|^2 = \left\langle \sum_{n=1}^N a_n \phi_n, \sum_{m=1}^N a_m \phi_m \right\rangle = \sum_{n=1}^N a_n \sum_{m=1}^N a_m^* \left\langle \phi_n, \phi_m \right\rangle = \sum_{n=1}^N |a_n|^2$ orthonormalité

Soit
$$y = \sum_{n=1}^{N} a_n \phi_n$$
 et $c_n = \langle x, \phi_n \rangle$ alors
$$\|x - y\|^2 = \langle x - y, x - y \rangle = \|x\|^2 - \langle x, y \rangle - \langle y, x \rangle + \|y\|^2$$

$$\langle x, y \rangle = \left\langle x, \sum_{n=1}^{N} a_n \phi_n \right\rangle = \sum_{n=1}^{N} a_n^* \langle x, \phi_n \rangle = \sum_{n=1}^{N} a_n^* c_n \qquad = \langle y, x \rangle^*$$

Ce qui implique
$$\|x-y\|^2 = \|x\|^2 - \sum_{n=1}^N a_n^* c_n - \sum_{n=1}^N a_n c_n^* + \sum_{n=1}^N |a_n|^2 \qquad \text{Demo JPEG}$$

$$= \|x\|^2 - \sum_{n=1}^N |c_n|^2 + \sum_{n=1}^N |a_n - c_n|^2 \qquad \text{minimum pour} \quad a_n = c_n$$

En effet: $|a_n - c_n|^2 = (a_n - c_n)(a_n^* - c_n^*) = |a_n|^2 + |c_n|^2 - a_n^*c_n - a_nc_n^*$

3.4 SERIES DE FOURIER TRIGONOMETRIQUES

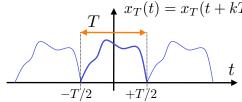
- Séries de Fourier trigonométriques
- Spectre d'un signal périodique
- Interprétation Hilbertienne
- Orthogonalité des co-sinusoïdes
- Séries de Fourier généralisées

Unser / Signaux & Systèmes

3-21

Séries de Fourier trigonométriques

lacktriangle Signal réel périodique de période T



$$\omega_0 = \frac{2\pi}{T}$$

Pulsation fondamentale

Décomposition en série de Fourier

$$x_T(t) = a_0 + \sum_{n=1}^{+\infty} \left(2a_n \cos(n\omega_0 t) + 2b_n \sin(n\omega_0 t) \right)$$

Calcul des coefficients de Fourier

$$a_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) \cos(n\omega_0 t) dt$$
$$b_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) \sin(n\omega_0 t) dt$$

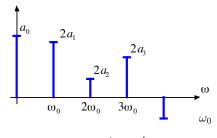
Condition d'existence $\int_{-T/2}^{T/2} |x_T(t)| \; \mathrm{d}t < +\infty$

Spectre d'un signal périodique

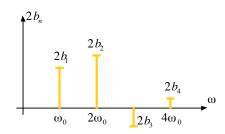
Notion de spectre discret

Un signal périodique est décrit de façon unique par ses coefficients de Fourier $a_0, 2a_n, 2b_n$

- $\Rightarrow x(t)$ possède un «spectre de lignes», un «spectre discret»
- Représentation graphique des lignes spectrales



composantes paires



composantes impaires

Décomposition en partie paire et impaire

$$x(t) = x_p(t) + x_i(t)$$

$$x_p(t) = a_0 + \sum_{n=1}^{+\infty} 2a_n \underbrace{\cos(n\omega_0 t)}_{\text{f.p.}}; \qquad x_i(t) = \sum_{n=1}^{+\infty} 2b_n \underbrace{\sin(n\omega_0 t)}_{\text{f.i.}}$$

$$x_i(t) = \sum_{n=1}^{+\infty} 2b_n \underbrace{\sin(n\omega_0 t)}_{\text{f.i.}}$$

Unser / Signaux et systèmes

3-23

Interprétation Hilbertienne

Espace de Hilbert des signaux à durée et énergie finies

$$L_2\left(\left[-\frac{T}{2}, \frac{T}{2}\right]\right) = \left\{x(t): \ x(t) = 0, \ |t| > \frac{T}{2} \ \text{et} \ \int_{-T/2}^{T/2} |x(t)|^2 \, \mathrm{d}t < +\infty\right\}$$

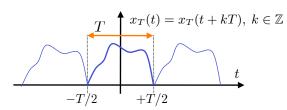
Produit scalaire associé

$$\langle x, y \rangle = \frac{1}{T} \int_{-T/2}^{T/2} x(t)y(t) dt$$

-T/2+T/2

 $\textbf{Th\'eor\`eme:}\quad \left\{1,\sqrt{2}\cos(n\omega_0t),\sqrt{2}\sin(n\omega_0t)\right\}_{n\in\mathbb{N}^+} \text{ est une base orthonormale pour } L_2\left(\left[-\frac{T}{2},\frac{T}{2}\right]\right)$

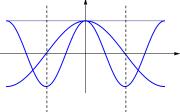
- Tout signal x(t) $\in~\mathcal{H}$ admet une décomposition unique en somme de fonctions (co-)sinusoïdales
- Extension naturelle aux signaux périodiques



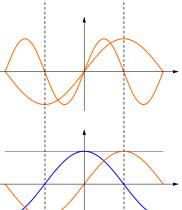
Orthogonalité des (co-)sinusoïdes

■ Relations fondamentales d'orthogonalité

$$\frac{2}{T} \int_{-T/2}^{T/2} \cos\left(\frac{m2\pi t}{T}\right) \cos\left(\frac{n2\pi t}{T}\right) dt = \delta_{m-n}$$



$$\frac{2}{T} \int_{-T/2}^{T/2} \sin\left(\frac{m2\pi t}{T}\right) \sin\left(\frac{n2\pi t}{T}\right) dt = \delta_{m-n}$$



$$\frac{2}{T} \int_{-T/2}^{T/2} \cos\left(\frac{m2\pi t}{T}\right) \sin\left(\frac{n2\pi t}{T}\right) dt = 0$$

Séries de Fourier généralisées

Soit $\{\phi_n(t)\}_{n\in\mathbb{Z}}$ un ensemble de fonctions orthonormales formant une base de $\mathcal{H}=L_2\left(\left[-\frac{T}{2},\frac{T}{2}\right]\right)$

Orthonormalité

Unser / Signaux et systèmes

$$\langle \phi_m, \phi_n \rangle = \frac{1}{T} \int_{-T/2}^{+T/2} \phi_m(t) \phi_n(t) dt = \delta_{m-n} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}$$

Séries de Fourier généralisées

$$x(t) = \sum_{n \in \mathbb{Z}} a_n \phi_n(t) \quad \text{avec} \quad a_n = \langle x, \phi_n \rangle = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) \phi_n(t) \, \mathrm{d}t$$

Vérification

$$\begin{aligned} & \text{Soit } x(t) = \sum_n a_n \phi_n(t) & \text{lin\'earit\'e du produit scalaire} \\ & a_m = \langle x, \phi_m \rangle = \left\langle \sum_n a_n \phi_n, \phi_m \right\rangle = \sum_n a_n \underbrace{\langle \phi_n, \phi_m \rangle}_{\delta_{n-m}} = a_m \end{aligned}$$

Encore faut-il s'assurer que la famille $\{\phi_n(t)\}_{n\in\mathbb{Z}}$ est complète. . .

3.5 SERIES DE FOURIER COMPLEXES

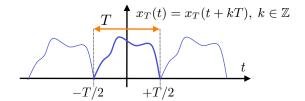
- Séries de Fourier (cas complexe)
- Simplification du calcul réel
- Amplitude et phase
- Interprétation du spectre de Fourier
- Espace de Hilbert complexe

Unser / Signaux & Systèmes

3-27

Série de Fourier (cas complexe)

 \blacksquare Signal complexe périodique de période T



$$\omega_0 = \frac{2\pi}{T}$$
 Pulsation

■ Décomposition en série de Fourier complexe

$$x_T(t) = \sum_{n \in \mathbb{Z}} c_n e^{jn\omega_0 t}$$

Calcul des coefficients de Fourier

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jn\omega_0 t} dt = \langle x_T, e^{jn\omega_0 \cdot} \rangle$$

Condition d'existence (suffisante):

$$\int_{-T/2}^{T/2} |x_T(t)| \, \mathrm{d}t < +\infty \quad \Rightarrow \quad |c_n| < +\infty$$

Simplification du calcul réel

 \blacksquare Coefficient de Fourier d'un signal réel $x_T(t)=x_T^*(t)$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-jn\omega_0 t} dt$$
 $c_{-n} = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{jn\omega_0 t} dt = c_n^*$

Lien avec la série de Fourier réelle

 $c_0 = a_0$ (valeur moyenne)

$$c_n = c_{-n}^* = a_n - jb_n$$

En effet:
$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) \left(\cos(n\omega_0 t) - j \sin(n\omega_0 t) \right) dt$$

$$= \underbrace{\frac{1}{T} \int_{-T/2}^{T/2} x_T(t) \cos(n\omega_0 t) dt}_{a_n = \frac{1}{2}(c_n + c_{-n})} - \underbrace{\frac{1}{T} \int_{-T/2}^{T/2} x_T(t) \sin(n\omega_0 t) dt}_{b_n = \frac{1}{2^i}(-c_n + c_{-n})}$$

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

Relations d'Euler:
$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

- Avantages de la représentation complexe
 - Simplification de l'écriture et des calculs (merci, Euler!)
 - Mise en évidence des symétries par l'introduction des fréquences négatives

3-29 Unser / Signaux et systèmes

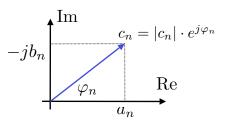
Amplitude et phase

Représentation polaire des coefficients de Fourier

$$c_n = a_n - jb_n = |c_n| \cdot e^{j\varphi_n}$$

Amplitude de c_n : $|c_n| = \sqrt{a_n^2 + b_n^2}$

Phase de
$$c_n$$
: $\varphi_n = \arg(c_n) = \arctan\left(\frac{-b_n}{a_n}\right) + k\pi, \quad k \in \mathbb{Z}$



Formule de reconstruction dans le cas réel

$$x_T(t) = \sum_{n \in \mathbb{Z}} c_n e^{jn\omega_0 t} = c_0 + \sum_{n=1}^{+\infty} c_n e^{jn\omega_0 t} + \sum_{n=1}^{+\infty} c_n^* e^{-jn\omega_0 t}$$

$$= c_0 + 2 \operatorname{Re} \left(\sum_{n=1}^{+\infty} c_n e^{jn\omega_0 t} \right) = c_0 + 2 \operatorname{Re} \left(\sum_{n=1}^{+\infty} |c_n| e^{j(n\omega_0 t + \varphi_n)} \right)$$

$$= c_0 + 2 \sum_{n=1}^{+\infty} |c_n| \cos(n\omega_0 t + \varphi_n)$$

3-30 Unser / Signaux et systèmes

Séries de Fourier: exemple

Signal rectangulaire

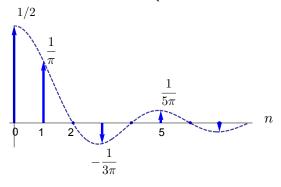
$$x_T(t) = \left\{ \begin{array}{ll} 1, & t \in (-T/4, T/4) \\ 0, & t \in [-T/2, -T/4) \cup [T/4, T/2) \end{array} \right.$$

Coefficients de Fourier

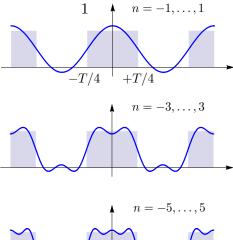
$$c_n = \frac{1}{T} \int_{-T/4}^{+T/4} e^{-j2\pi nt/T} dt = \left. \frac{e^{-j2\pi nt/T}}{-j2\pi n} \right|_{-T/4}^{+T/4} = \frac{\sin(\pi n/2)}{\pi n}$$

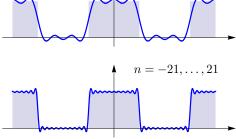
Spectre de Fourier

$$c_n = |c_n| \cdot e^{j\varphi_n}$$
 $\varphi_n = \begin{cases} \pi, & n = 3, 7, 11, \dots \\ 0, & \text{sinon} \end{cases}$



Séries de Fourier tronquées





Unser / Signaux et systèmes

3-31

Interprétation du spectre de Fourier

Amplitude

- Plus un signal est à variation lente, plus son spectre décroît de façon rapide.
- lacktriangle Concept de largeur de bande: domaine spectral sur lequel les amplitudes spectrales $|c_n|$ ne sont pas négligeables. Typiquement, un signal à variation rapide a une largeur de bande supérieure à celle d'un signal à variation lente.
- Degré de différentiabilité. La présence d'une discontinuité se traduit par une décroissance lente du spectre; e.g., 1/n. On démontre que si les k premières dérivées d'un signal sont bornées, alors son spectre décroît au moins comme $1/n^k$.

Phase

■ La phase a un rôle crucial pour reproduire la forme d'un signal. Pour générer un saut brusque, il est primordial que les fronts (zéros) des sinusoïdes soient bien en phase.

Symétrie

Signal réel: $c_{-n} = c_n^*$

■ Signal réel pair: $c_n = \operatorname{Re}(c_n) = a_n \Rightarrow \operatorname{spectre} réel$

lacksquare Signal réel impair: $c_n=j\operatorname{Im}(c_n)=-jb_n \ \Rightarrow \ \operatorname{spectre}$ purement imaginaire

Espace de Hilbert complexe

Espace des signaux complexes à durée et énergie finies

$$\mathcal{H}_T = \left\{ x(t): \ x(t) \in \mathbb{C}, \int_{-T/2}^{T/2} \left| x(t) \right|^2 \, \mathrm{d}t < +\infty \text{ et } \ x(t) = 0 \text{ pour } |t| > \frac{T}{2} \right\}$$
 Produit scalaire associé:
$$\langle x,y \rangle = \frac{1}{T} \int_{-T/2}^{T/2} x(t) y^*(t) \, \mathrm{d}t$$

Théorème: $\left\{e^{jn\omega_0t}\right\}_{n\in\mathbb{Z}}$ est une base orthonormale de \mathcal{H}_T

$$\Rightarrow \forall x \in \mathcal{H}_T, \quad x(t) = \sum_{n \in \mathbb{Z}} \langle x, e^{jn\omega_0 \cdot} \rangle e^{jn\omega_0 t}$$

Orthogonalité des exponentielles complexes

$$\langle e^{\mathrm{j}m\omega_0 \cdot}, e^{\mathrm{j}n\omega_0 \cdot} \rangle = \frac{1}{T} \int_{-T/2}^{T/2} e^{jm\omega_0 t} e^{-jn\omega_0 t} \, \mathrm{d}t = \delta_{m-n}$$

Justification: $\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j2\pi(m-n)t} dt = 0 \text{ pour } m \neq n \text{ (compensation des valeurs positives et négatives)}$

Unser / Signaux et systèmes 3-33

3.6 BASES ORTHOGONALES: COMPLEMENTS

- Bases orthonormales
- Systèmes complets: de Bessel à Parseval
- Parseval et séries de Fourier
- Phénomène de Gibbs

Bases orthonormales

Structure mathématique requise

Espace de Hilbert ${\cal H}$ muni d'un produit scalaire $\langle x,y\rangle$ qui spécifie les notions de norme et d'orthogonalité

- Bases orthonormales: propriétés fondamentales
 - 1) les fonctions $\phi_n \in \mathcal{H}$ doivent être orthonormales; c.à d. $\langle \phi_m, \phi_n \rangle = \delta_{m-n}$
 - 2) le système $\{\phi_n\}$ doit être complet; c. à d.

"tout élément de ${\mathcal H}$ peut se représenter de façon exacte"

"il n'existe aucun élément non nul de ${\mathcal H}$ orthogonal à tous les ϕ_n "

- ⇒ le point délicat en dimension infinie!
- Développement dans une base orthonormale

$$\forall x \in \mathcal{H}, \ x = \sum_{n} \langle x, \phi_n \rangle \phi_n$$
 \Leftrightarrow $\forall x \in \mathcal{H}, \ \left\| x - \sum_{n} \langle x, \phi_n \rangle \phi_n \right\| = 0$

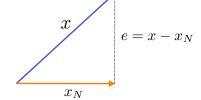
Unser / Signaux et systèmes 3-35

Systèmes complets: de Bessel à Parseval

Inégalité de Bessel

Soit $\{\phi_n\}_{n\in\mathbb{N}}$ un système de fonctions orthonormales dans \mathcal{H} .

$$\forall x \in \mathcal{H}, \ \sum_{n \in \mathbb{N}} |\langle x, \phi_n \rangle|^2 = \sum_{n \in \mathbb{N}} |c_n|^2 \leqslant ||x||^2$$



Preuve: Application du théorème d'approximation orthogonale

$$||x - x_N||^2 = ||x||^2 - ||x_N||^2 = ||x||^2 - \sum_{n=0}^{N} |c_n|^2 \ge 0 \quad \Rightarrow \quad \sum_{n=0}^{N} |c_n|^2 \le ||x||^2$$

$$||x||^2 = ||x_N||^2 + ||e||^2$$

Définition

Le système orthonormal $\{\phi_n\}_{n\in\mathbb{N}}$ est **complet** si et seulement si

$$\forall x \in \mathcal{H}, \ \lim_{N \to +\infty} \|x - x_N\|^2 = \left\| x - \sum_{n \in \mathbb{N}} \langle x, \phi_n \rangle \phi_n \right\|^2 = 0$$

Théorème de Parseval

$$\begin{split} \{\phi_n\}_{n\in\mathbb{N}} \text{ est un système orthonormal complet—et donc une base orthonormale de } \mathcal{H} - \\ \text{si et seulement si} \quad \forall x\in\mathcal{H}, \quad \sum_{n\in\mathbb{N}} \left|\langle x,\phi_n\rangle\right|^2 = \sum_{n\in\mathbb{N}} |c_n|^2 = \|x\|^2 \end{split}$$

Parseval et séries de Fourier

Coefficients de Fourier complexes: $c_n = \langle x, \phi_n \rangle = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\omega_0 t} dt$

Relation de Parseval

$$||x||^2 = \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \sum_{n \in \mathbb{Z}} |c_n|^2$$

Série tronquée:
$$x_N = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t}$$

Erreur d'approximation:
$$||x - x_N||^2 = ||x||^2 - \sum_{n=-N}^{+N} |c_n|^2 \stackrel{N \to \infty}{\longrightarrow} 0$$

Convergence des séries de Fourier

C'est une question qui a longtemps laissé les mathématiciens perplexes et qui n'a été résolue, de façon satisfaisante, qu'au début du 20ème siècle (théorie de Lebesgue).

La convergence *uniforme* nécessite, en particulier, que x(t) soit continue.

Autrement, on a seulement une convergence au sens de la norme L_2 (cf. Gibbs).

De plus, si $x \in L_2\left(\left[-\frac{T}{2}, \frac{T}{2}\right]\right)$, la convergence ponctuelle (*i.e.*, $\lim_{N \to \infty} x_N(t_0) = x(t_0)$) est assurée *presque partout* (Carleson, 1966; Prix Abel 2006).

Unser / Signaux et systèmes 3-37

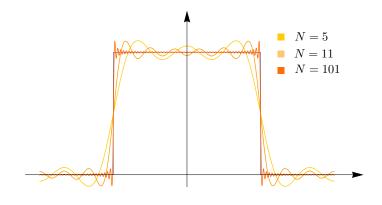
Phénomène de Gibbs

Décomposition en série de Fourier d'une onde rectangulaire de période T=1

$$x(t) = \begin{cases} 0, & -\frac{1}{2} \le t < -\frac{1}{4} \\ 1, & -\frac{1}{4} < t < +\frac{1}{4} \\ 0, & +\frac{1}{4} < t < +\frac{1}{2} \end{cases}$$

$$x_N(t) = \sum_{n=-N}^{+N} c_n e^{j2\pi nt}$$

$$c_n = \int_{-1/4}^{+1/4} e^{-j2\pi nt} dt = \frac{\sin(n\pi/2)}{n\pi}$$



Commentaires

Deux ensembles de conditions suffisantes pour la convergence uniforme des séries de Fourier sont:

$$lacksquare x(t)$$
 continue et $\sum_{n\in\mathbb{Z}}|c_n|<+\infty$

 $\mathbf{x}(t)$ ainsi que sa dérivée sont à énergie finie;

Aucun n'est satisfait ici!